ISSN 1729-4428

А.А. Ащеулов, О.М. Маник, Т.О. Маник, А.Й. Савчук, В.Р. Білинський-Слотило

Особливості хімічного зв'язку FeSe та FeTe

Чернівецький національний університет імені Юрія Федьковича, 58000, вул. Коцюбинського 2, Чернівці, Україна, e-mail: manykto@rambler.ru

На основі методів теорій пружності і динаміки кристалічної гратки створена математична модель хімічного зв'язку FeSe та FeTe, показано її можливості у вирішенні технологічних задач.

Ключові слова: селенід заліза, телурид заліза, хімічний зв'язок, силові постійні, характеристичні частоти, пружні модулі.

Стаття поступила до редакції 24.10.2011; прийнята до друку 15.12.2011.

Вступ

Відкриття високотемпературного надпровідника LaOFeAs [1] спричинило чисельні дослідження шаруватих надпровідників на основі заліза [2-7]. При цьому було визначено, принаймні, три типи кристалічних структур для цих матеріалів:

- ZrCuSiAs-тип шаруватої тетрагональної структури LaOFeAs;

- відносно простий ThCr₂Si₂-тип шаруватої тетрагональної структури BaFe₂As₂;

- найпростіший тип шаруватої тетрагональної структури FeSe типу PbO.

Останній відомий як α-FeSe – кристал з температурою переходу в надпровідний стан T_c ~ 8 К [5]. Досить сильне зростання – $T_c = 27 \text{ K}$ – спостерігається при тиску $P = 1,48 \Gamma \Pi a$ [6]. Результати [7] показують, що застосування гідростатичного тиску спочатку швидко збільшують T_c, досягаючи широкого максимуму (T_c = 37 K) при ~7 ГПа, а при подальшому зростанні тиску – до ~ 14 ГПа – спостерігається зменшення Т_с до 6 К. Це значення Т_с найвище серед бінарних сполук. FeTe також має тетрагональну структуру типу PbO та характеризується структурним переходом в ромбічну фазу при 70 К, який на відміну від FeSe супроводжується антиферомагнітним впорядкуванням.

3 підвищенням чистоти та ступеня структурної досконалості виявляються нові властивості, що розширюють масштаби та специфіку використання як окремих надпровідних матеріалів FeSe і FeTe, так і сполук на їх основі. При цьому, для створення нових матеріалів із необхідними властивостями потрібна інформація технологічні параметри про 3

урахуванням природи хімічного зв'язку. Тому метою цієї роботи є проведення комплексних досліджень особливостей формування хімічного зв'язку халькогенілів заліза.

I. Кристалічна структура і модель хімічного зв'язку

Аналіз [8 - 13] показав, що при кімнатній та FeTe характеризуються температурі FeSe тетрагональною кристалічною структурою (a = 3,7752 Å, c = 5,5268 Å y випадку FeSe та a = 3,8266 Å, c = 6,2935 Å – для FeTe). Найменші міжатомні віддалі для FeSe складають 2,67 Å і 2,373 Å, а для FeTe – 2,706 Å і 2,559 Å. На основі цих даних розраховані координати атомів елементарних комірок цих кристалів (табл. 1), позначені на рис. 1.

Рис. 1. Схема елементарної комірки кристалів FeSe (FeTe).

Таблиця 1

Позначення	FeSe			FeTe			
атомів	х	У	Z	х	У	Z	
1	0	0	0	0	0	0	
2	0	3,7752	0	0	3,8266	0	
3	3,7752	3,7752	0	3,8266	3,8266	0	
4	3,7752	0	0	3,8266	0	0	
5	0	0	5,5268	0	0	6,2935	
6	0	3,7752	5,5268	0	3,8266	6,2935	
7	3,7752	3,7752	5,5268	3,8266	3,8266	6,2935	
8	3,7752	0	5,5268	3,8266	0	6,2935	
9	1,8876	1,8876	5,5268	1,9133	1,9133	6,2935	
10	1,8876	1,8876	0	1,9133	1,9133	0	
11	1,8876	0	4,0896	1,9133	0	4,5943	
12	1,8876	3,7752	4,0896	1,9133	3,8266	4,5943	
13	0	1,8876	1,4372	0	1,9133	1,6992	
14	3,7752	1,8876	1,4372	3,8266	1,9133	1,6992	

Координати атомів в елементарних комірках FeSe та FeTe

Чисельні значення координат приведені в декартовій системі. Ці результати дали можливість провести розрахунки просторових кутів між напрямками зв'язків досліджуваних матеріалах з яких випливає, що ми маємо п'ять нееквівалентних сімейств хімічних зв'язків з міжатомними відстанями у випадку FeSe:

$$\begin{array}{ll} R_1 = R_{1,13} = 2,3723 \ \text{\AA}; & R_2 = R_{1,10} = 3,6695 \ \text{\AA}; \\ R_3 = R_{11,13} = 3,7635 \ \text{\AA}; \\ R_4 = R_{1,2} = 3,7752 \ \text{\AA}; & R_5 = R_{1,14} = 4,4587 \ \text{\AA}, \end{array} \tag{1}$$
 - ta FeTe:

$$R_1 = R_{1,13} = 2,5589 \text{ Å};$$
 $R_2 = R_{1,10} = 2,7058 \text{ Å};$
 $R_3 = R_{1,2} = 3.8266 \text{ Å};$

 $R_4 = R_{11,13} = 3,9626$ Å; $R_5 = R_{1,14} = 4,6034$ Å, (2) що в свою чергу проявляється як на їх фізичних властивостях, так і технологічних режимах.

II. Силові та енергетичні параметри

В даній роботі розрахунок силових постійних мікроскопічної теорії проводився за допомогою підходу [14]. Його першим етапом є встановлення взаємозв'язку між теоріями гратки та пружності. Феноменологічна теорія пружності розглядає кристал як континуум з постійною густиною р в недеформованому рівноважному стані. Стан кристалу описується векторним полем зміщень S(R, t), яке задає зміщення в момент t деякої точки, що має в рівновазі координату R. Цей опис застосовується тоді, коли зміщення сусідніх атомів майже рівні і в цьому розумінні представляються неперервним полем зміщень, шо повільно змінюються.

Деформація кожної точки континууму представляється симетричним тензором [15]:

$$e_{mn} = \frac{1}{2} \left(S_{m/n} + S_{n/m} \right), \tag{3}$$

де $S_{m/n} = \partial S_m / \partial x_n$ характеризує зміну компонент вектора зміщення. Співвідношення між напруженнями і деформаціями, згідно [16], виражається тензором σ_{ik} :

$$\mathbf{s}_{ik} = \sum_{m,n} C_{ik,mn} \ \mathbf{e}_{mn} \ , \tag{4}$$

де *С*_{*ik,mn*} – тензор пружних постійних.

Рівняння руху теорії пружності, яке отримано з умови рівності сил інерції та напруження

$$r \mathfrak{S}_{i} = \Sigma C_{ik,mn} S_{m/nk} , \qquad (5)$$

порівнюється з рівнянням руху теорії гратки:

$$MS_i^m = -\sum_{m,k} \Phi_{ik}^{mn} S_i^n , \qquad (6)$$

де $\Phi_{ik}^{mn} = \frac{\partial^2 \Phi}{\partial x_i^m \partial x_k^n} \bigg|_{R=R_0}$ - сила, що діє на атом *m* у

напрямку (i), коли атом n зміщений на відстань S в напрямку k, в той час, як всі інші атоми перебувають у стані рівноваги $R = R_0$.

Замінюючи в (6) S_i^m полем зміщень $S_i(R,t)$ [15]

$$S_i^m = S\left(\stackrel{1}{A}m, t\right),\tag{7}$$

де \overline{A} - матриця, що задає положення ядра в гратці, та розклавши S_k^n в ряд біля точки $R = \overline{A}m$, а також вводячи густину $\rho = M/V_z$ де M - усереднена маса, а V_z - об'єм елементарної комірки, маємо:

$$r \mathfrak{S}_{i} = \sum_{kmn} C_{ik,mn} S_{k/mn} , \qquad (8)$$

$$\text{de } C_{ik,mn} = -\frac{1}{2V_z} \sum_{h} \Phi^h_{ik} \left(\frac{\mathbf{I}}{Ah}\right)_m \left(\frac{\mathbf{I}}{Ah}\right)_n . \tag{9}$$

При описі пружних властивостей халькогенідів заліза ми виходили з наближення пружинного зв'язку між сусідами. Це означає, що коливання уздовж міжатомних зв'язків відбуваються незалежно і характеризуються своїм коефіцієнтом пружності $f^{(\ell)}$, де $1 \le \ell \le 5$. Співвідношення (9) модифікується наступним чином:

$$C_{ik,mn} = \frac{1}{2V_z} \sum_{k=1}^{(\mathbf{l})} \Phi_{ik}^{(h)} \left(Ah_k\right)_m^{\mathbf{l}} \left(Ah_k\right)_n^{\mathbf{l}}, (10)$$

де ℓ - означає належність до певного типу нееквівалентних орбіталей, а h_k характеризує перехід атомних зв'язків у рамках одного сімейства під дією елементів симетрії.

У такому наближенні коливання уздовж атомних зв'язків визначаються відповідним коефіцієнтом пружності $f^{(\ell)}$. При цьому величини ${}^{(1)}\Phi_{ik}^{(h)}$ пов'язані з $f^{(\ell)}$ співвідношенням:

$$\|{}^{(\mathbf{l})}\Phi_{ik}^{(h)}\| = f^{(\mathbf{l})}\|{}^{(\mathbf{l})}a_{ik}^{(h)}\|, \qquad (11)$$

де ${}^{(1)}a_{ik}^{(h)} = \cos j \frac{h}{1i} \cos j \frac{h}{1k}$ - добуток направляючих косинусів зв'язків ℓ з осями координат x_i і x_k $(1 \le i,k \le 3)$ атомів елементарної комірки.

За допомогою розрахунків направляючих косинусів, чисельні значення яких представлені в табл. 2, й проекцій міжатомних відстаней на координатні осі були складені співвідношення типу (10), які характеризують взаємозв'язок між силовими матрицями і пружними постійними кристалів FeSe та FeTe. Розв'язуючи далі отриману систему рівнянь відносно $f^{(\ell)}$ визначено аналітичні вирази та чисельні значення силових констант мікроскопічної теорії $f^{(\ell)}$.

При цьому аналітичні вирази силових констант для FeSe мають вид:

$$\begin{cases} f^{(1)} \cdot a^{-1} = 7,9776 \cdot \tilde{C}_{13} + 17,1586 \cdot \tilde{C}_{33} - 41,8574 \cdot \tilde{C}_{44}, \\ f^{(2)} \cdot a^{-1} = -11,7121 \cdot \tilde{C}_{12} + 40,4065 \cdot \tilde{C}_{13} - 20,4641 \cdot \tilde{C}_{33} + 11,8633 \cdot \tilde{C}_{44} - 11,7121 \cdot \tilde{C}_{66}, \\ f^{(3)} \cdot a^{-1} = -16,9053 \cdot \tilde{C}_{33} + 9,8003 \cdot \tilde{C}_{44}, \\ f^{(4)} \cdot a^{-1} = -2,928 \cdot \tilde{C}_{11} + 1,464 \cdot \tilde{C}_{12} + 15,1521 \cdot \tilde{C}_{13} - 10,8633 \cdot \tilde{C}_{33} + 6,2976 \cdot \tilde{C}_{44} + 1,464 \cdot \tilde{C}_{66}, \\ f^{(5)} \cdot a^{-1} = -28,1804 \cdot \tilde{C}_{13} + 20,2041 \cdot \tilde{C}_{33} - 11,7126 \cdot \tilde{C}_{44}, \end{cases}$$
(12)

де а – постійна гратки. Аналогічні аналітичні вирази отримані і для FeTe.

Необхідні для розрахунку силових констант $f^{(\ell)}$ значення пружних постійних C_{ij} взяті з експериментальних даних [17]. Анізотропія пружних постійних FeSe складає

С₁₁:С₁₂:С₁₃:С₃₃:С₄₄:С₆₆ = 6,43:3,29:1:2,64:1,49:5,44,(13) а для FeTe

 $C_{11}:C_{12}:C_{13}:C_{33}:C_{44}:C_{66} = 5,727:2,08:1:2,969:1,406:2,67$ (14)

Чисельні значення коефіцієнтів пружності $f^{(\ell)}$, що відповідають п'яти нееквівалентним сімействам хімічних зв'язків досліджуваних матеріалів, приведені в табл.3. Їх аналіз показує, що на відміну від ідеальної структури, де силові постійні $f^{(\ell)}$ для всіх ℓ - однакові, у разі FeSe та FeTe ми маємо «набір» чисельних значень $f^{(\ell)}$, що вказує на наявність тонкої структури плавлення і кристалізації цих речовин [18 -22].

Далі отримані результати використовувались для розрахунків енергетичних параметрів FeSe та FeTe. У нашому випадку це характеристичні частоти коливань атомів окремих хімічних зв'язків.

III. Розрахунок частот коливань атомів окремих хімічних зв'язків

Знаходження частот коливань молекул FeSe i

FeTe полягає в застосуванні рівнянь Лагранжа [14]. Записавши потенціальну та кінетичну енергії в узагальнених координатах x_i (I = 1, 2...n), що позначають вихід розглянутої системи *n*- частинок з положення рівноваги, і підставляючи рішення коливного типу у вигляді

$$x_j = x_{j_0} e^{iWt}, \qquad (15)$$

де ω – кругова частота коливань (звичайна частота v число коливань в одиницю часу, помножене на 2π), отримаємо систему рівнянь

$$\sum_{j=1}^{n} \left(K_{\mathbf{l}j} - T_{\mathbf{l}j} w^2 \right) = 0, \qquad (j = 1, 2...n), \quad (16)$$

де $T_{\ell j}$ – постійні, залежні від мас і геометрії рівноважної конфігурації, а $K_{\ell j}$ - постійні потенціальної енергії, що характеризують силову структуру даної системи.

Помноживши систему рівнянь (16) на коефіцієнти, що задовольняють умовам:

$$\sum_{\mathbf{I}} A_{i\mathbf{I}} T_{\mathbf{I}j} = d_{ij} \begin{cases} 1 \text{ при } \mathbf{I} = j \\ 0 \text{ при } \mathbf{I} \neq j \end{cases},$$
(17)

та вводячи в подальшому коефіцієнти $D_{ij} = \sum_{l} A_{il} K_{lj}$ записуємо систему (16) у вигляді

$$\sum_{i} \left(D_{ij} - d_{ij} w^2 \right) x_j = 0 \tag{18}$$

Таблиця 2

Баба				Галя кристаль гезе та гете			
FeSe				Fele			
$\begin{vmatrix} i \\ \cos j \frac{h}{\mathbf{l}i} \end{vmatrix}$	х	У	Z	$\frac{i}{\left \cos j \frac{h}{\mathbf{l}i}\right }$	х	у	Z
$\cos j \frac{1,13}{1}$	0	0,796	0,606	$\cos j \frac{1,13}{1}$	0	0,7478	0,664
$\cos j_{1}^{2,13}$	0	0,796	0,606	$\cos j_{1}^{2,13}$	0	0,7478	0,664
$\cos j \frac{1,10}{2}$	0,707	0,707	0	$\cos j \frac{1,10}{2}$	0,707	0,707	0
$\cos j \frac{2,10}{2}$	0,707	0,707	0	$\cos j \frac{2,10}{2}$	0,707	0,707	0
$\cos j_{3}^{11,13}$	0,5016	0,5016	0,7047	$\cos j \frac{1,2}{3}$	0	1	0
$\cos j_{3}^{11,14}$	0,5016	0,5016	0,7047	$\cos j \frac{2,3}{3}$	1	0	0
$\cos j \frac{1,2}{4}$	0	1	0	$\cos j \frac{11,13}{4}$	0,4828	0,4828	0,7306
$\cos j \frac{2,3}{4}$	1	0	0	$\cos j \frac{11,14}{4}$	0,4828	0,4828	0,7306
$\cos j \frac{1,14}{5}$	0,8467	0,4234	0,3223	$\cos j \frac{1,14}{5}$	0,8313	0,4156	0,3691
$\cos j \frac{2,14}{5}$	0,8467	0,4234	0,3223	$\cos j \frac{2,14}{5}$	0,8313	0,4156	0,3691

Чисельні значення направляючих косинусів $\left|\cos j \frac{h}{\mathbf{l}_i}\right|$ зв'язків ℓ з осями

Таблиця 3

Чисельні значення силових постійних $f^{(\ell)}$, характеристичних частот ω_ℓ та температур T_ℓ кристалів FeSe та FeTe

Елемент	l	1	2	3	4	5
FeSe	$f^{(\ell)}$, $H\!/\!\!M$	-51,3	-548,8	-168	-57,1	43,3
	$\omega_{\ell} \cdot 10^{13}, \ \Gamma_{\mu}$	16,14	15,79	8,34	8,86	8,16
	T_{ℓ}, K	1348	1292,4	360,6	406,9	345,2
FeTe	$f^{(\ell)}$, $H\!/\!\!M$	-44,7	-372,4	-92,6	-201,9	38,2
	$\omega_{\ell} \cdot 10^{13}, \ \Gamma_{\mu}$	12,84	12,15	10,52	6,18	5,31
	T_{ℓ}, K	1187	1061,6	796,1	275,1	202,6

Таким чином, розрахунок характеристичних частот у нашому випадку зводиться до знаходження коефіцієнтів взаємодії динамічної матриці Дія. Для цього були розраховані кінематичні $A_{i\ell}$ і динамічні $K_{\ell i}$ коефіцієнти при різних значеннях індексів і, є, і, розрахунок яких проводився за допомогою силових характеристик моделі хімічного зв'язку. Підставляючи $A_{i\ell}$ та $K_{\ell i}$ знайдено елементи динамічної матриці за допомогою яких, згідно (18), розраховано характеристичні частоти в кристалах FeSe та FeTe (табл. 3).

Викладений вище підхід дає можливість вирішити ряд технологічних задач пов'язаних з перетвореннями. поліморфними При цьом у плавлення розглядається як наслідок механічної неможливість нестабільності, що обумовлює існування кристала при температурах вище Тпл.

Користуючись моделлю коливань гратки з єдиною характеристичної частотою V_E Ліндеманн отримав рівняння для температури плавлення [23]:

$$T_{KOI} = c n_E^2 V_n^{2/3} M , \qquad (19)$$

яке зв'язує характеристичну частоту коливань кристала з температурою коливного плавлення Ткол та іншими фізичними величинами – молярним об'ємом V_n , атомною масою *M* та постійною *c*.

Прийняття такої концепції дозволило використати (19) для знаходження характеристичних температур нееквівалентних хімічних зв'язків FeSe та FeTe (табл. 3), виявити тонку структуру плавлення / кристалізації, а також прослідкувати динаміку формування окремих складових хімічного зв'язку досліджуваних матеріалів. Так, температура кристалізації кристалу відповідає температурі

формування першої складової його хімічного зв'язку, а подальший температурний відпал, значення якого вибирається у відповідності із температурами утворення другої, третьої, четвертої або п'ятої складових, дає можливість задавати матеріалу, який отримується, необхідні електричні, механічні, оптичні та інші властивості.

Як випливає з вищенаведеного, поліморфні перетворення відбуваються при характерних саме для цих сполук значеннях температури. Це веде до виникнення відповідних якісних та кількісних змін хімічного зв'язку, кристалічної структури та фізичних властивостей кристалів, що дає можливість обрати необхідні технологічні рішення з метою забезпечення потрібних властивостей одержуваних матеріалів. особливостей хімічного зв'язку халькогенідів заліза:

- виявлена структура хімічних зв'язків кристалів FeSe та FeTe;

- створена методика та проведені розрахунки силових та енергетичних характеристик хімічних зв'язків FeSe та FeTe, що дозволило встановити наявність складної структури плавлення або кристалізації та дало можливість вибору оригінальних технологічних рішень отримання нових матеріалів із заданими властивостями.

Ащеулов А.А. - д.т.н., г.н.с. Чернівецького національного університету ім. Юрія Федьковича; Маник О.М. - к.ф.-м.н., доцент; Маник Т.О. - аспірантка Чернівецького національного університету ім. Юрія Федьковича; Савчук А.Й. - д.ф.-м.н., професор; Білинський-Слотило В.Р. – аспірант.

Висновки

Проведено комплексні дослідження

- [1] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono. J. Amer. Chem. Soc. 130(11), 3296 (2008).
- [2] M. Norman. Physics 1, 21 (2008).
- [3] M. Rotter, M. Tegel, D. Johrendt. Phys. Rev. Lett. 101, 107006 (2008).
- [4] K. Sasmal, B. Lv, B. Lorenz, at all. Phys. Rev. Lett. 101, 107007 (2008).
- [5] F.C. Hsu, J.Y. Luo, K.W. Yeh, at all. Proc. Natl. Acad. Sci. USA 38, 14262 (2008).
- [6] Y. Mizuguchi, F. Tomioka, S. Tsuda, at all. Appl. Phys.Lett. 93, 152505 (2008).
- [7] S. Margadonna, Y. Takabayashi, Y. Ohishi, at all. Phys. Rev. B 80, 064506 (2009).
- [8] D. Phelan, J.N. Millican, E.L. Thomas, at all. Phys. Rev. B 79, 014519 (2009).
- [9] Fong-Chi Hsu, Jiu-Yong Luo, Kuo-Wei Yeh, at all. arXiv:0807.2369v2.
- [10] K.W. Yeh, H.C. Hsu, T.W. Huang, at all. J. Phys. Soc. Jpn. 77(C), 19 (2008).
- [11] Alaska Subedi, Lijun Zhang, David J. Singh, Mao-Hua Du. Phys. Rev. B 78, 134514 (2008).
- [12] Y. Mizuguchi, F. Tomioka, S. Tsuda, at all. J. Phys. Soc. Jpn. 78, 074712 (2009).
- [13] Kwang Pyo Chae, Sung Ho Lee, Soon Sik Kim. Journal of the Korean Physical Society 20(2), 95 (1987).
- [14] O.M. Manik. Bagatofaktornij pidhid v teoretichnomu materialoznavstvi (Prut, Chernivci, 1999).
- [15] G. Lejbfrid. Mikroskopicheskaja teorija mehanicheskih i teplovyh svojstv kristal lov (Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury, Moskva-Leningrad, 1963).
- [16] L.D. Landau, E.M. Lifshic. Teorija upru gosti (Nauka, Moskva, 1965).
- [17] R.W. Gómez, V. Marquina, J.L. Pérez-Mazariego, at all. J Supercond. Nov. Magn. 23, 551 (2010).
- [18] A.A. Ashheulov, I.V. Gucul, O.N. Manik, T.O. Manik, S.F. Marenkin. Neorgan. materialy 46(6), 649 (2010).
- [19] A.A. Ashheulov, I.V. Gucul, O.N. Manik, T.O. Manik. TKJeA 6(84), 56 (2009).
- [20] A.A. Ashheulov, I.V. Gucul, O.N. Manik, T.O. Manik. SJeMST 1(2), 64 (2010).
- [21] T.O. Manik. FHTT 11(2), 377 (2010).
- [22] A.A. Ashcheulov, O.N. Manyk, T.O. Manyk, S.F. Marenkin, V.R. Bilynskiy-Slotylo. Inorganic Materials 47(9), 952 (2011).
- [23] A.R. Ubbelode. Rassplavlenoe sostojanie veshhestva (Metallurgija, Moskva, 1982).

A.A. Ashcheulov, O.M. Manyk, T.O. Manyk, A.I. Savchuk, V.R. Bilynskyj-Slotylo

Peculiarities of The Chemical Bond of FeSe and FeTe

Yuriy Fedkovych Chernivtsi National University, 58000, Kotsyubinskogo St. 2, Chernivtsi, Ukraine, e-mail: <u>manykto@rambler.ru</u>

Mathematical model of the chemical bond of FeSe and FeTe was created by the methods of elasticity and crystal lattice dynamics and shown its possibilities in technological problems solving.

Keywords: iron selenide, iron telluride, chemical bond, force coefficients, characteristic frequencies, elastic modules.